导航:首页 > 工程设计 > 大跨空间建筑结构施工技术

大跨空间建筑结构施工技术

发布时间:2020-12-14 04:31:44

❶ 请问 目前世界最大的空间结构建筑 和跨度最大的薄壳结构建筑

大跨度空间结构技术在奥运会建筑中,一直处于核心地位。国家体育馆钢屋架,是目前国内空间跨度最大的双向张弦钢屋架结构体系。
大太阳在线消息1896年,皮埃尔·顾拜旦在古代奥运会的发源地希腊重新燃起奥运之火后,现代奥运会已经走过了100多年的历史,在这100多年中,她几乎周游了全世界,并在世界各地的奥运举办地留下了不可磨灭的痕迹——美仑美奂的奥运百年建筑。

大跨度空间结构技术促进奥运建筑的发展
对于这些丰富多彩的百年奥运建筑来说,没有一种技术能像大跨度空间结构技术对它们产生更大的促进作用了。而奥运建筑也为大跨度空间结构技术提供了精美的展示舞台和实践机会,因为最先进的大跨度空间结构技术往往首先运用于奥运会。
综观奥运近50余年的发展历史,大跨度空间结构技术一直居于核心地位。如奥运历史上著名的罗马大小体育馆(1960年意大利罗马奥运会)均采用了装配现
浇式钢筋混凝土薄壳结构,莫斯科中央红军之家综合体育馆(1980年莫斯科奥运会)采用了空间桁架网架结构,东京代代木国立体育中心(1964年东京奥运会)
采用了张拉结构,巴塞罗那圣乔地体育馆(1992年巴塞罗那奥运会)采用了网壳结构,……等等。
大跨度空间结构 国家体育馆堪称“老大”
当现代奥运会走进具有悠久历史灿烂文化的中国时,国家体育馆奉献了目前国内空间跨度最大的双向张弦钢屋架结构体系——跨度最大的双向张弦钢桁架结构。
国家体育馆钢屋架南北长144米,东西宽114米,整个体育馆钢屋架工程由14榀桁架组成,总用钢量达2800吨,钢屋架形状呈扇形波浪曲线,是目前国内空间
跨度最大的双向张弦钢屋架结构体系。但表面上看去,却轻盈而富于动感,赋予了国家体育馆灵动之美。
据国家体育馆业主单位国奥投资发展有限公司副总经理沈永山介绍,这是目前国内空间跨度最大的双向张弦钢屋架结构体系,它满足了结构设计的三个要素:1、结合建筑设计的美观要求,2、承载方式安全可靠,3、结构受力体系简洁合理且造价低廉。
沈永山说,设计时充分考虑施工的要求。由于结构复杂、技术难度大,钢屋架安装采用纵向张拉后携带双向索进行整体滑移安装技术。高效的、节省工期的施工方法,使屋顶的钢结构一次成型,填补了国内空白。在施工中也采用了由第三方对主要受力杠杆,支撑架系统、所有焊缝进行监测,布置和安装健康监测点,提高整个工程在施工过程中的安全性。
为了给国家体育馆屋顶架上钢屋架,施工技术人员首次采用了9个“机器人”进行的滑移施工技术。施工人员先对钢屋架在地面进行组装,然后把组装好的每部分钢屋架吊上屋顶进行拼装,并严格控制钢屋架焊接点位置。安装在钢屋架与轨道之间的9个“机器人”用一台电脑进行控制,统一编成行进程序,控制滑移的时间和行程。

❷ 关于大跨建筑结构,你知道多少

大跨建筑即大跨度建筑,通常是指跨度在60m以上的建筑,主要用于民用建筑的回影剧院、体育场答馆、展览馆、大会堂、航空港以及其他大型公共建筑。在工业建筑中则主要用于飞机装配车间、飞机库和其他大跨度厂房。
大跨建筑结构包括网架结构、网壳结构、悬索结构、桁架结构、膜结构、薄壳结构等基本空间结构及各类组合空间结构。

❸ 目前,我国大跨度大空间的建筑主要采用那种结构形式

不同结构形式关于大跨度的标准也不同,钢筋砼框架结构,超过18米即为大跨度;钢结构、桁架超过60米,希望你满意

❹ 什么叫大跨建筑

大跨建筑即大跨度建筑,通常是指跨度在60m以上的建筑,主要用于民用建筑的影剧院、体育场馆、展览馆、大会堂、航空港以及其他大型公共建筑。在工业建筑中则主要用于飞机装配车间、飞机库和其他大跨度厂房。
大跨建筑结构包括网架结构、网壳结构、悬索结构、桁架结构、膜结构、薄壳结构等基本空间结构及各类组合空间结构。
知识点延伸:
大跨度建筑迅速发展的原因:
1、一方面是由于社会发展使建筑功能愈来愈复杂,需要建造高大的建筑空间来满足群众集会、举行大型的文艺体育表演、举办盛大的各种博览会等;
2、另一方面则是新材料、新结构、新技术的出现,促进了大跨度建筑的进步。一是需要,二是可能,两者相辅相成,相互促进,缺一不可。例如在古希腊古罗马时代就出现了规模宏大的容纳几万人的大剧场和大角斗场,但当时的材料和结构技术条件却无法建造能覆盖上百米跨度的屋顶结构,结果只能建成露天的大剧场和露天的大角斗场。19世纪后半期以来,钢结构和钢筋混凝土结构在建筑上的广泛应用,使大跨度建筑有了很快的发展,特别是近几十年来新品种的钢材和水泥在强度方面有了很大的提高,各种轻质高强材料、新型化学材料、高效能防水材料、高效能绝热材料的出现,为建造各种新型的大跨度结构和各种造型新颖的大跨度建筑创造了更有利的物质技术条件。

❺ 大跨度建筑如何进行钢结构的安装

大跨度建筑通常是那些跨度在30米以上的建筑物,一般常见于影剧院、体育场馆、展览馆、大会堂、航空港以及其他大型公共建筑以及其他的飞机装配厂、 车间库、飞机库和其他大跨度厂房建筑。一般来说,大跨度建筑的结构主要有着以下几种:
1 网架结构
在生活中,具有着网架结构的建筑物一般就是体育馆、展览馆、影院、饭堂等。它们都有着屋盖结构,具有工业程度化高、自重比较轻轻、稳定性好、外形美观等优良的特点。
从大体上来说,网架的钢结构有着焊接球节点、螺栓球节点与钢板节点这三种节点方式。网架结构建筑物的基本单元一般是三角锥、三棱体、正方体、截头四角锥等等,平面形状的三边形、四边形、六边形、圆形或其他任何形体都是有这些基本单位组建的。
2 悬索及索桁架结构
这种结构的特点是要以一系列拉索为主要承重的构件,这些拉索按一定的规则组建成不同的各种形式,并且悬挂于相应的支撑结构上,使建筑物的材料强度在受拉情况下能得到充分发挥的结构形式。这类建筑物外形美观、设计施工技术比较复杂,一般常见于大跨度的屋顶。
3 网壳结构
同第一种网架结构差不多,这类结构的网壳也是由许多杆件按一定规律组建,通过节点连接成空间杆系的结构。不同的是,网架结构网架的外形是呈平板状,而网壳结外形则呈曲面状。
这类结构一般来说为单层或者双层,按其外形来分,有单曲面或者双曲面构成的网状穹顶、网状筒壳,以及双曲抛物面网壳等等多种多样的形式。
这类网壳结构有着外形美观、通透感好,建筑空间大、用材省,设计施工较复杂等优良的特点,一般来说比较受欢迎。
结合大跨度建筑的这些特点,在大跨度建筑的钢结构安装时,也要因地制宜,用不同的方法来安装。
详见网络文库:大跨度建筑如何进行钢结构的安装

❻ 大跨空间结构建筑有哪些

满意答案 热心问友 2009-10-28 1983年建成的加拿大卡尔加里体育馆采用双曲抛物面索网屋盖,其圆形平版面直径135m,它是为1988年冬权季奥运会修建的,外形极为美观,迄今仍是世界上最大的索网结构。70年代以来,由于结构使用织物材料的改进,膜结构或索-膜结构(用索加强的膜结构)获得了发展,美国建造了许多规模很大的气承式索-膜结构;1988年东京建成的“后乐园”棒球馆,也采用这种结构技术尤为先进,其近似圆形平面的直径为204m;美国亚特兰大为1996年奥运会修建的“佐治亚穹顶”(Geogia Dome,1992年建成)采用新颖的整体张拉式索一膜结构,其准椭圆形平面的轮廓尺寸达192mX241m。许多宏伟而富有特色的大跨度建筑已成为当地的象征性标志和著名的人文景观。

❼ 大跨空间建筑即屋盖结构跨度超过多少的空间建筑

没有明确的界定。仅仅GB50017-2003《钢结构设计规范》8.6.1提及到,“8.6.1大跨度屋盖系指跨度等于或大于60m的屋盖结构,可采用......等空间结构”。

❽ 大跨空间结构建筑有哪些

大跨空间结构建筑有:

  1. 国家游泳中心又被称为“水立方”,位于北京奥林匹克公园内,是北京为2008年夏季奥运会修建的主游泳馆,也是2008年北京奥运会标志性建筑物之一。工程占地62828m²,赛时建筑面积79532 m2,建筑物檐口高度31m,基底面积177m×177m,标准坐席17000个(其中临时坐席约13000个,永久坐席4000个)。本工程主体结构设计使用年限100 年。“水立方”的建筑外围护采用新型的环保节能ETFE(四氟乙烯)膜材料,由3000多个气枕组成,覆盖面积达到10万m2。这些气枕大小不一,形状各异,最大一个约9 m²,最小一个不足1 m²。墙面和屋顶都分为内外3层,9803个球型节点、20870根钢质杆件中,没有一个零件在空间定位上是完全平行的。“水立方”最大的设计特色是建筑中气泡和自由结构的加入,使得形体上的极端简洁与表现上的极端丰富愈发相得益彰,体现出东方思想与现代的契合。共由3000多个气枕组成,覆盖面积达到11万平方米的“水立方”膜结构,是世界上规模最大的膜结构工程,也是唯一一个完全由膜结构来进行全封闭的大型公共建筑。

  2. 上海世博日本馆,基地形状狭长而不规则,长向两端最长距离约为115.5 米,宽度最大约为60 米,基地面积为6448 平方米。展馆主体为地上2 层局部3 层,整个建筑由穹顶覆盖,穹顶结构与各层楼板结构各自独立,穹顶采用钢骨空间网架结构,外表面装饰材料为双层ETFE 内充气膜。穹顶内为主要展示空间、多功能剧场及辅助空间,地下为地热架空层、雨水储存槽及泵房等。外部结构围护体系分为主网壳和小网壳,均采用单层钢结构网壳,网壳外覆ETFE 膜。主网壳长94.5 米,宽51.9 米,高23.85 米,内设6 根异性钢网壳柱支撑。小网壳为椭圆行网壳长27 米,宽20 米,高11.5 米。内部结构体系采用带支撑的钢框架结构,主体地上二层,局部三层、四层,一层地下室。框架结构总高度为19.5 米。楼屋面采用压型钢板组合楼板体系,舞台上部采用钢桁架结构。钢结构防火采用超薄型涂料,耐火等级一级。

  3. 北京奥运会国家体育场,跨度为333mx297m,结构形式为微弯平板网架结构,结构特点为屋盖主体结构是两向不规则斜交平面桁架系组成的椭圆平面网架结构,网架外形呈微弯形双曲抛物面,由24榀门式桁架围绕体育馆内部碗状看台旋转而成,屋盖支撑在24根不等高的立体桁架柱上,柱距为37.958m。

  4. 新加坡综合体育馆,采用两对曲线形的脊桁架和四块三角形网壳组成人字形剖面的屋盖。该馆平面为菱形200m×100m.支承在周边58根钢拄和两对内拄上.总复盖建筑面积1 3750m²,用钢指标86kg/m²。1 990年建成。该网壳采用地面和低空拼装,并设置三道铰线用千斤顶提升就位。在安装阶段.屋盖各部分之间驶边柱上、下两端均为铰接。待施 工完后再加以固定,这种由日本空问结构专家川口卫开发的所谓Pantadome施工法,曾在巴塞罗那奥运会主体育馆网壳穹顶(平面尺寸106m×128m)施工时采用。


❾ 大跨空间结构建筑有哪些

大跨度空间结构是国家建筑科学技术发展水平的重要标志之一。世界各国对空间结构的研究和发展都极为重视,例如国际性的博览会、奥运会、亚运会等,各国都以新型的空间结构来展示本国的建筑科学技术水平,空间结构已经成为衡量一个国家建筑技术水平高低的标志之一。
随着科技水平的提高,我国空间结构理论分析近年来得到了长足的发展,计算方法由连续化分析到离散化分析,由近似计算到精确分析,由等效静力分析到直接动力分析,由线性分析到非线性分析。研究方法向理论、试验与大量计算机分析相结合的方向发展。
1、研究手段的进展
结合具体工程进行了大量的试验研究,其中包括了悬索、网架、网壳、组合结构和张拉整体等各类空间结构。编制了大量的计算程序对各类空间结构体系进行计算分析,揭示了各种新型结构动力特性与地震反应特点及随参数变化的规律。给出了各类空间结构的响应规律,试验结果与计算分析值基本得到相互验证,新的研究成果使得新结构、新体系层出不穷,极大地丰富了空间结构领域,进一步展示了我国建筑科技水平的不断提高。
2、计算理论的进展
空间结构的计算理论由弹性分析到弹塑性地震响应分析,在多遇地震作用下按弹性阶段进行计算的同时,还要防止结构在罕遇地震作用下倒塌并考虑到设计的经济性对结构弹塑性进行分析。利用圆杆截面空间梁系弹塑性本构关系,结合分割有限元法、Newmark 逐步积分法和Euler 一次Newton 一RaPhaon 迭代法,编制了空间网壳结构弹塑性地震响应时程分析程序,给出了单层球面与单层柱面网壳弹塑性响应规律和斜拉网格结构弹塑性响应规律,推导出了单元弹塑性刚度矩阵,研究了双层与单层柱面网壳弹塑性反应随参数变化的情况。对柔性结构全面考虑了几何非线性的影响,使得计算精度得到极大地提高,计算理论不断完善。
此外,空间结构与支承体系协同工作性能得到进一步地明确。在
最初进行这类结构分析时,大多数采用离散分析,考虑到计算机容量及计算时间问题,常把支承体系用三向固定铰支承代替,将空间结构与支承拆开,单独进行计算P 但由于实际支承体系往往不是三向刚度无限大,周边简支模型与实际出人较大,后来进展到采用弹性支承的空间结构计算模型。有关共同工作问题,空间结构学术界不断进行研究,提出各种钢网格结构与混凝土支承不同材料组合体系的阻尼简化公式,给出了修正的弹性支承计算模型。现有的分析软件也逐渐实现整体分析。
3、结构抗震分析理论的进展
大跨度空间结构抗震分析从单维地震反应分析发展到多维地震反应分析。由于地震时地面运动是多维的,同时各方向地震动引起的地震响应一般为同数量级的,因此为更真实地掌握结构地震反应,进行多维地震反应分析剥良必要的。地震动有六维分量,由于结构设计形式尽量保证了均匀对称,同时计算转动分量将带来过大的计算土作量,自前研究的震动以三个平动分量输人为主,为考虑三维地震输人,空间网壳结构曾用时程法进行确定分析;近年来,北京工业大学引用了林家浩等提出的单维虚拟激励法推导出网格结构多维地震输人的虚拟激励随机分析方法,编制了相应程序,并提出了随机参数取法,用此程序对单层、双层柱面网壳、球面网壳进行了系统的多维地震反应分析,得出了一些有益的结论。
4、空间结构隔震、控震分析
结构震动控制包括基础隔震、被动控制、主动和半主动控制及近年来提出的智能控制。有关土建结构振动控制研究与应用约有30 年的历史。我国空间结构中采用橡胶支座隔震已相当普及,但在空间结构振动控制方面尚处于起步研究阶段,现已取得了二些可喜的科研成果。在基础隔震方面,同济大学、浙江大学等单位给出了各种支座的隔震性能、设计计算方法,浙江大学提出了适合于网格结构的粘弹性阻尼材料代替橡胶支座,北京交通大学研制出万向支承方向转动抗震减震支座,获得了专利。在网壳结构控制方面,哈尔滨工业大学提出了多个TMD 调频质量阻尼器的MTMD 系统,建立了随机振动计算模型,采用传递函数算法和非线性数学规划方法确定其最优控制参 数,并针对各类单层网壳进行了振动控制分析;设计了粘滞阻尼器,安装在网壳上进行地震模拟震动台试验,得出了相关结论。北京工业大学对网壳结构进行了半主动控制研究,提出将半主动控制器做成变刚度变阻尼杆件以替代网壳杆件的方法,并给出了控制杆件的最优布置准则。兰州理工大学提出采用约束屈曲支撑(B RB )代替部分网壳结构杆件的做法,利用通用有限元软件ANSYs 对这种新型结构体系的各种形式进行分析,寻找约束屈曲支撑在整体结构中的最优布置和影响规律,在参数分析的基础上,探索网壳结构减震体系的减震机理与变化规律,分析结构减震控制的关键因素。

❿ 大跨度建筑结构问题

大跨空间结构是目前发展最快的结构类型。大跨度建筑及作为其核心的空间结构技术的发展状况是代表一个国家建筑科技水平的重要标志之一。本文就空间网格结构和张力结构两大类介绍了国内外(但主要是国外)空间结构的发展现状和前景。对这一领域几个重要理论问题,包括空间结构的形态分析理论、大跨柔性属盖的动力风效应、网壳结构的稳定性和抗震性能等问题的研究提出了看法。 一、概述 在这实际的三维世界里,任何结构物本质上都是空间性质的,只不过出于简化设计和建造的目的,人们在许多场合把它们分解成一片片平面结构来进行构造和计算。与此同时,无法进行简单分解的真正意义上的空间体系也始终没有停止其自身的发展,而且日益显示出一般平面结构无法比拟的丰富多彩和创造潜力,体现出大自然的美丽和神奇。空间结构的卓越工作性能不仅仅表现在三维受力,而且还由于它们通过合理的曲面形体来有效抵抗外荷载的作用。当跨度增大时,空间结构就愈能显示出它们优异的技术经济性能。事实上,当跨度达到一定程度后,一般平面结构往往已难于成为合理的选择。从国内外工程实践来看,大跨度建筑多数采用各种形式的空间结构体系。 近二十余年来,各种类型的大跨空间结构在美、日、欧等发达国家发展很快。建筑物的跨度和规模越来越大,目前,尺度达150m以上的超大规模建筑已非个别;结构形式丰富多彩,采用了许多新材料和新技术,发展了许多新的空间结构形式。例如1975年建成的美国新奥尔良"超级穹顶"(Superdome),直径207m,长期被认为是世界上最大的球面网壳;现在这一地位已被1993年建成夏径为222m的日本福冈体育馆所取代,但后者更著名的特点是它的可开合性:它的球形屋盖由三块可旋转的扇形网壳组成,扇形沿圆周导轨移动,体育馆即可呈全封闭、开启1/3或开启2/3等不同状态。1983年建成的加拿大卡尔加里体育馆采用双曲抛物面索网屋盖,其圆形平面直径135m,它是为1988年冬季奥运会修建的,外形极为美观,迄今仍是世界上最大的索网结构。70年代以来,由于结构使用织物材料的改进,膜结构或索-膜结构(用索加强的膜结构)获得了发展,美国建造了许多规模很大的气承式索-膜结构;1988年东京建成的"后乐园"棒球馆,也采用这种结构技术尤为先进,其近似圆形平面的直径为204m;美国亚特兰大为1996年奥运会修建的"佐治亚穹顶"(Geogia Dome,1992年建成)采用新颖的整体张拉式索一膜结构,其准椭圆形平面的轮廓尺寸达192mX241m。许多宏伟而富有特色的大跨度建筑已成为当地的象征性标志和著名的人文景观。 由于经济和文化发展的需要,人们还在不断追求覆盖更大的空间,例如有人设想将整个街区、整个广场、甚至整个山谷覆盖起来形成一个可人工控制气候的人聚环境或休闲环境;为了发掘和保护古代陵墓和重要古迹,也有人设想采用超大跨度结构物将其覆盖起来形成封闭的环境。目前某些发达国家正在进行尺度为300m以上的超大跨度空间结构的设计方案探讨。 可以这样说,大跨空间结构是最近三十多年来发展最快的结构形式。国际《空间结构》杂志主编马考夫斯基(Z.S.Makowski)说:在60年代"空间结构还被认为是一种兴趣但仍属陌生的非传统结构,然而今天已被全世界广泛接受。"从今天来看,大跨度和超大跨度建筑物及作为其核心的空间结构技术的发展状况已成为代表一个国家建筑科技水平的重要标志之一。 世界各国为大跨度空间结构的发展投入了大量的研究经费。例如,早在20年前美国土木工程学会曾组织了为期 10年的空间结构研究计划,投入经费 1550万美元。同一时期,西德由斯图加特大学主持组织了一个"大跨度空间结构综合研究计划",每年研究经费100万马克以上。这些研究工作为各国大跨度建筑的蓬勃发展奠定了坚实的理论基础和技术条件。国际壳体和空间结构学会(IASS)每年定期举行年会和各种学术交流活动,是目前最受欢迎的著名学术团体之一。 我国大跨度空间结构的基础原来比较薄弱,但随着国家经济实力的增强和社会发展的需要,近十余年来也取得了比较迅猛的发展。工程实践的数量较多,空间结构的类型和形式逐渐趋向多样化,相应的理论研究和设计技术也逐步完善。以北京亚运会(1990)、哈尔滨冬季亚运会(1996)、上海八运会(1997)的许多体育建筑为代表的一系列大跨空间结构--作为我国建筑科技进步的某种象征在国内外都取得了一定影响。 ? 种种迹象说明,我国虽然尚是一个发展中国家,但由于国大人多,随着国力的不断增强,要建造更多更大的体育、休闲、展览、航空港、机库等大空间和超大空间建筑物的需求十分旺盛,而且这种需求量在一定程度上可能超过许多发达国家。这是我国空间结构领域面临的巨大机遇。 但与国际先进水平相比,我国大跨空间结构的发展仍存在一定差距。主要表现在结构形式还比较拘谨,较少大胆创新之作,说明新颖的建筑构思与先进的结构创造之间尚缺乏理想的有机结合,尤其是150m以上的超大跨度空间结构的工程实践还比较少;结构类型相对地集中于网架和网壳结构,悬索结构用得比较少,而一些有巨大前景的新颖结构形式如膜结构和索-膜结构、整体张拉结构、可开合结构等在国外已有不少成功的工程实践,在我国则还处于空白或艰难起步阶段。情况看来是,我国空间结构的发展经过十余年来在较为平坦的草原上的驰骋之后,似乎遇上了一个需要努力跃上的新台阶。这一新台阶包含材料和生产条件等技术问题,也包含尚未很好解决的一些理论问题。为促进我国空间结构进一步的更高层次的发展,有待科技工作者和企业家努力创造条件,以求得这些技术问题和理论问题较快较好地解决。 大跨空间结构的类型和形式十分丰富多彩,习惯上分为如下这些类型:钢筋混凝土薄壳结构;平板网架结构;网壳结构;悬索结构;膜结构和索-膜结构;近年来国外用的较多的"索穹顶"(Cable Dome)实际上也是一种特殊形式的索-膜结构;混合结构(Hybrid Structure),通常是柔性构件和刚性构件的联合应用。 在上述各种空间结构类型中,钢筋混凝土薄壁结构在50年代后期及60年代前期在我国有所发展,当时建造过一些中等跨度的球面壳、柱面壳、双曲扁壳和扭壳,在理论研究方面还投入过许多力量,制定了相应的设计规程。但这种结构类型日前应用较少,主要原因可能是施工比较费时费事。平板网架和网壳结构,还包括一些未能单独归类的特殊形式,如折板式网架结构、多平面型网架结构、多层多跨框架式网架结构等,总起来可称为空间网格结构。这类结构在我国发展很快,且持续不衰。悬索结构、膜结构和索-膜结构等柔性体系均以张力来抵抗外荷载的作用,可总称为张力结构。这类结构富有发展前景。

阅读全文

与大跨空间建筑结构施工技术相关的资料

热点内容
公司社保账户变更说明 浏览:719
威远县严陵建筑工程有限责任公司 浏览:797
鄂州住房公积金帐号 浏览:250
江都区建设局与引江棚户区 浏览:717
扬州住房公积金比例 浏览:516
无业买社保还需要买公积金吗 浏览:403
退伍军人住房补贴新政策 浏览:385
工资5000深圳交社保后最后拿到多少 浏览:373
管城区城乡建设和交通运输局招聘 浏览:777
杭州滨江住房公积金 浏览:856
社保缴费基数有试用期工资吗 浏览:377
建筑工程城市规划专业 浏览:656
现代设计建筑设计 浏览:9
2014年天津社保缴纳基数是多少 浏览:758
社保交基数高 浏览:275
南京社保卡每月返还多少 浏览:732
北京社保卡办理点 浏览:827
黄陂前川卫生院生化分析仪中标公告 浏览:677
安徽和君建筑工程有限公司亳州市 浏览:455
社保卡上没有录入缴费信息吗 浏览:296